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Abstract: The optimal power flow (OPF) problem is a critical problem for power generation and is generally 

non-convex. This paper mainly focuses on the tree topology of the distribution networks. It studies the two-bus 

network with fixed and variable voltage magnitudes. Simulation has been done in Matlab. The result shows that 

the OPF problem can be treated as a convex problem if one or more voltage magnitudes is fixed in a two-bus 

network.    
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I. Nomenclature 
V: complex voltage vector at all buses. 

|V|: voltage magnitude vector at all buses.  

θ: voltage angle vector at all buses Y: admittance matrix  

g:  shunt conductance  

b:  shunt susceptance 

S: vector of apparent power flow on the line  

P:  vector of active power generations  

Q: vector of reactive power generations 

 L: loss of the line  

( )*: Hermitian transpose of a matrix j: the imaginary unit.   

Eig: eigenvalue of a matrix  

Re: real part of a complex matrix  

Im: imaginary part of a complex matrix  

 

II. Introduction 
The optimal power flow problem was first discussed in Carpentier’spaper  in 1962.  The objective of an 

Optimal Power Flow (OPF) algorithm is to find an optimal operating point, which minimizes the generation cost 

or network loss, subject to a wide range of practical constraints, e.g. bus voltage limits, bus power limits, 

thermal line constraints, etc.   

The OPF problem is a non-convex and challenging for the following two reasons [1]. Firstly, since the 

injected power at buses depends quadratically one the voltages at the buses, the optimization problem is non-

linear. Secondly, power system need to satisfy a series of constraints such as active/reactive power balance 

equations, power flow limit of line, bus voltage magnitude limits and active/reactive power generation limits.      

Given the practical importance of the problem, a great many studies have been developed to give efficient 

solution methods, including linear programming, non-linear programming, quadratic programming, interior 

point methods, Lagrangian relaxation, artificial intelligence, fuzzy logic, evolutionary programming, genetic 

algorithm and particle swarm optimization [2], [3].   

One widely used for method is the DC (direct current)-OPF, which linearized the OPF problem with 

assumptions that the power line is lossless, the voltage magnitudes are fixed and the voltage angles are small [4]. 

This method is not accurate and will perform poorly if the resistance/inductance ratio of the line is high.   

In an effort to convexity the AC OPF problem, various convex relaxation techniques have been 

developed. Semidefinite programming (SDP) method can create a convex relaxation of the OPF problem. In [5], 

it proposes solving the Lagrangian dual problem instead of solving the OPF problem directly. The paper proves 

that its SDP formulation will satisfy a condition ensuring zero duality gap between the primal and dual objective 

function for most OPF problems. In [6], it shows that the load flow problem of a radial distribution system (tree 

networks) is a convex problem and can be modeled in the form of a conic program. However, the result could 

not be applied to a meshed network. Then the question lies on what kind of networks can the OPF problem be 

convexified.    
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Power system consists of transmission networks and distribution networks.  The transmission network 

is usually made up of high to very high voltage lines that designed to transfer power from major generators to 

areas in need, the networks’ voltages are typically above 100 kV. Distribution networks is designed to distribute 

power from the transmission network to end users, it is usually made up of low voltage lines with voltage 

magnitudes below 100 kV. Traditionally OPF problem mainly focus on transmission networks, but nowadays 

with increasing interest on renewable energy, distributed generation and smart grid, comes with increasing 

demand on solving the OPF problem in distribution networks. This paper will focuses on topics about convex 

optimization in distribution networks.  

There are typically two types of distribution networks, radial (tree network) or interconnected network. 

A tree network leaves the station and passes with no normal connection to any other supply. This is typical of 

long rural lines. An interconnected network is generally found in urban areas and has multiple connections to 

other points of supply. Since most distribution networks is with a tree topology and research on tree networks 

will shed light on the general problem, the goal of this paper is to study on the tree topology of distribution 

networks.   

The paper is organized as follows. In Section I, we establish the notations. In Section III, we state the 

model used in this paper. In Section IV and Section V, models of a two-bus network with fixed voltage and 

variable voltage have been studied. In Section VI, we try to explore the possibility of using SDP method to solve 

OPF problem from anther sight, by checking the Lagrangian dual problem instead of solving OPF directly.  And 

Section VII concludes the paper.   

 

III. Problem Formulation 
A. Admittance Matrix  

Consider an AC power system with n nodes (buses) and define the network as a graph with the nodes 

set [n] = {1, 2,…, n}. We write i ~ k if there is an edge between nodes iand k, which means buses i and k are 

connected. Let yiidenote the shunt admittance-to-ground at bus i, and yik= gik- jbik denote the admittance of the 

line is buses I and j are connected, where gik, bik>0 (the lines are resistive and inductive). The n x n admittance 

matrix Y can be defined as  

Yik    (1)  

Note that this matrix is symmetric but not necessarily Hermitian.   

Let the n-dimensional vector of complex bus voltage be V = (V1, V2, … ,Vn) and the vector of complex currents 

be I = (I1, I2, …In), where Vi is the voltage at bus iand Iiis the total current flowing out of busi to the rest of the 

network. The above parameters are related by Kirchoff’s Current Law, I = YV.   

The vector of complex (apparent) power at busi is equal to  Si = Pi + jQi = Vi Ii *, i∈ [n],where Pi and Qi 

represent the net active and reactive powers at bus irespectively.   

 

B. Classical OPF Problem  

Denote G the set of generator buses, L the set of all lines. Let PDi + jQDi be the active and reactive power at bus 

i, i∈ [n], Vi= Vdi + jVqi be the voltage vector in rectangular coordinates at each bus i, i∈ [n]. Let PGi + jQGi be the 

generator power at generator buses i∈G, Sik be the apparent power flow on line (i, k) ∈L. The upper and lower 

bounds are expressed by superscripts ―max‖ and ―min‖.   

Cost functions associated with each generator i∈G can be expressed as a quadratic objective function as 

below.   

fi (PGi) = ci2P
2

Gi + ci1PGi + ci0(2) 

where ci2, ci1, and ci0 are non-negative numbers.   

The classical OPF problem can be expressed as below.   

 
subject to  

PGi
min

 ≤ PGi ≤ PGi
max

 k ∈ G               (3) 

QGi
min

 ≤ QGi ≤ QGi
max

k ∈ G               (4)  

(Vi
min

)
2 ≤ V di

 2
 + Vqi

2
 ≤ (Vi

max
)

2 
 k ∈[n](5) 

|Sik| ≤Sikmax  (i,k) ∈ L           (6)  

 

PGi −  PDi =Vd i  

(7) 
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QGi  

+ Vq i (8) 

 

The inequalities (3), (4), (5) and (6) limit the power and voltage variables to within the given bounds. The 

equations (7) and (8) are the physical constrains imposed by the power network.   

 

IV. Case Studies Of Two-Bus Network 
Definition of Pareto-front: points on the boundary of the region for which one cannot decrease any component 

without increasing another component. OPF problems with increasing objective functions defined on the 

injection region must lie there [8].   

A. Two-Bus Network With Angle, Thermal and Flow  

Constraints (Fixed Voltage Magnitudes).  

Figure 1 shows the two-bus network with line admittance y = g-jb. 

 
Figure 1. A two-bus network 

Let V1=|V1|exp(jθ1), V2=|V2|exp(jθ2). In this model, assume that |V1| and |V2| are fixed, θ1 and θ2 can vary. 

The power flowing from bus 1 to bus 2 can be written as,  

S12=V1|V1-V2|* y12*                           (9)  

The power injections at the two buses can be expressed as  

[8].   

P1 = |V1|
2
g+|V1||V2|bsin(θ)- |V1||V2|gcos(θ)          (10)  

P2 = |V2|
2
g - |V1||V2|bsin(θ)- |V1||V2|gcos(θ)            (11)  

Where θ =θ1-θ2, P1=P12, P2=P21.  

Since the voltage magnitudes |V1| and |V2| are fixed, the power flows between two nodes is a function with 

only one parameter θ.   

Mapping equation (10) and (11) on coordinate leads to a hollow ellipse which is centered at (|V1|
2
g, |V2|

2
g). 

The ellipse’s major axis has a length of |V1||V2|b, while the minor principle axis has a length of |V1||V2|g. The 

major axis is -45 ° to the x-axis.   

From [9], we know that in typical power systems: 1) the inductive reactance of the series elements is much 

larger than the resistance, and  

2) the capacitive susceptance of the shunt elements is much larger than the shunt conductance.   

Therefore, for a line between buses i and k,   

  |gik|<<|bik|                                          (12)  

In practice, b/g ratio is larger than 10 for transmission networks and between 3 and 5 for distribution networks 

[10], [11]. In this paper, we only consider the distribution networks.   

Take b=5, g=1, |V1|=|V2|, simulate equation (10) and (11) in Matlab. The new formulas turned to be  

P1 = 1+5sin(θ)- cos(θ)                          (13)  

P2 = 1- 5sin(θ) - cos(θ)                           (14)  

 
Figure 2. The region corresponding to b=5, g=1, |V1|=|V2|  

 

The simulation result is shown in figure 2.This reveals the relationship of P1 and P2 with only voltage 

constraints. The bold curve is the Pareto-front, the filled ellipse is the convex hull. It is obvious that the Pareto-

fronts of the empty and filled ellipse are the same. Thus, though the empty ellipse is non-convex, it can be 

treated as a convex optimization problem if the objective function is increasing.   

We then consider the effect of thermal, line flow and angle constraints on this problem.   

The loss of the line L12 can be calculated as   

L12=P12+P21=|V1|
2
g - 2|V1||V2|gsin(θ)+ |V2|

2
g    (15)  
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Since |V1| and |V2| are fixed, the thermal loss and line flow constraints can be translated to angle constraints θ 

≤ θ ≤  for θ 

. The bold curve in Figure 3 shows the  

region with a certain angle constraint. The bold curve is the corresponding Pareto-front, and it is obvious that 

this Pareto-front is the same as that of the convex hull. Thus, though this problem is non-convex, we can solve it 

as a convex problem with an increasing function f.  

 
Figure 3. The region corresponding to b=5, g=1, |V1|=|V2| with angle constraint 

 

B. Two-Bus Network with Bus Constraints (Fixed Voltage Magnitudes)  
Considering the effect of bus power constraints on the two-bus network, there are three possible cases for the 

injection region [8] as it shown in figure 4.   

In figure 4(a), both buses have power upper bounds. In figure 4(b), P1 has power upper bounds, P2have 

both power upper and lower bounds. For these two situations, the Pareto-fronts of bold curves are the same as 

the Pareto-fronts of convex hull. This means the non-convex problem can be translated to an easy-to-solve 

convex optimization problem.   

In figure 4(c), both buses have power lower bounds. In this case, the Pareto-front of bold curve is no 

longer the same as that of the convex hull. This reveals that if two buses are connected, then they cannot be 

simultaneously has a tight bus active power lower bound.   

 

 
Figure 4. Three possible cases for the bus power constrained injection region.  

 

C. Two-Bus Network With Angle, Thermal and Flow Constraints (Variable Voltage Magnitudes).  

Case A and B assume that the bus voltage magnitudes |V1| and |V2| are fixed. In this part, the goal is to study 

the behavior of the two-bus network in figure 1 when the bus voltage magnitudes vary in a small range. We try 

to simulate this case in Matlab to check the geometry characteristic of this model.   

Use structure in figure 1, equation (10) and (11) still applies to this model, assume that V1=|V1|exp(jθ1), 

V2=|V2|exp(jθ2), 0.9 ≤ |V1| ≤ 1.1, 0.9 ≤ |V2| ≤ 1.1, θ1 and θ2 ’s range depend on realistic constraints.   

Take b=5, g=1, the new formulas turned to be  
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P1 = |V1|
2
+5|V1||V2|sin(θ)- |V1||V2|cos(θ)                      (16)  

P2 = |V1|
2
- 5|V1||V2| sin(θ)- |V1||V2|cos(θ)                       (17)  

          0.9 ≤ |V1| ≤ 1.1                                                                   (18)  

          0.9 ≤ |V2| ≤ 1.1                                                                   (19)  

The result is a series of hollow ellipse, as it is shown in Figure 5.   

 
Figure 5. The region corresponding to b=5, g=1, 0.9 ≤ |V1| ≤ 1.1, 0.9 ≤ |V2| ≤ 1.1 

 

Figure 5 reveals the relationship of P1 and P2 with only voltage constraints. To see clearly what is happening 

on the bound, limit the number of hollow ellipses to 4 by adjusting |V1| and |V2|, The result is shown in figure 6. 

It is obvious that the hollow ellipses at each voltage intersect with each other.  

 
Figure 6. The region corresponding to b=5, g=1, 0.9 ≤ |V1| ≤ 1.1, 0.9 ≤ |V2| ≤ 1.1, with only four ellipses. 

 

Then try to fix |V2|=1, only change |V1| between 0.9 and 1.1, other conditions remain the same with Figure 5. 

The result is shown in figure 7. It is interesting that the curves below the major axis intersect with each other, 

but the curves above the major axis have no intersections.   

 
Figure 7. The region corresponding to b=5, g=1, 0.9 ≤ |V1| ≤ 1.1, |V2| = 1  

Try to change the b/g ratio to see its effect on the bounds. Take b=3, g=1, other conditions remain the same with  

 

 

 

 

 

 

 

 

 

 



Convex Optimization in Power Distribution Networks 

National Conference On Recent Innovations In Engineering Science, Technology & Management         40 | Page 

Agnel Institute Of Technology And Design Assagao, Bardez, Goa – 403 507 

Figure 5.. The result is shown in figure 8.   

 
Figure 8. The region corresponding to b=3, g=1, (a) is under the condition 

 

0.9 ≤ |V1| ≤ 1.1, 0.9 ≤ |V2| ≤ 1.1 with multiple ellipses. (b) is under the condition  

0.9 ≤ |V1| ≤ 1.1, 0.9 ≤ |V2| ≤ 1.1 with only four ellipses. (c) is under the condition  

0.9 ≤ |V1| ≤ 1.1, |V2| = 1 

As we can see, the change of b/g ratio only changes the length of major axis/ length of minor principle axis 

ratio. The main properties of the problem haven’t change.   

The above cases in IV.C only consider voltage constraints. We then consider the effect of thermal, line flow 

and angle constraints on this problem.   

    In terms of the line parameter b12 and g12, the angle thermal, line flow and angle constraints can be written as 

[9]  

- )                    (20)  

    To simulate this case in Matlab, we take b=5, g=1, then the angle is between -1.3734 and 1.3734.. The result 

is shown in figure 9.   

 
Figure 9. The region corresponding to b=5, g=1, 0.9 ≤ |V1| ≤ 1.1, 0.9 ≤ |V2| ≤ 1.1 with angle constraints. 

From the above observation, we see the corresponding region of different cases and get a general ideal of the 

problem. To get a more strict deduction, we do the following theory analysis in Section V.   

 

V. Theory Analysis Of Two-Bus Network With Variable Voltages  
    To simplify this problem, take b=5, g=1, equation (16) and  

(17) can also be written as   

=1             (21)  

Letting  = X1,  = X2, assume the bound of V1 and V2 is [a, b], the bound of P1 is [c, d], and the bound of P2 

is [e, f].  
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Then equation (21) can be written as   

 

              (22) 

 

The original OPF problem for two-bus networks with variable voltages can be simplified as below. 

Minimize:       f (P1, P2)                                                           (23) Subject to:       

g (x)  ≤ 0                                                          (24) 

                    X1-b
2 ≤ 0                                                           (25) 

a
2
- X1≤ 0                                                          (26) 

X2-b
2≤ 0                                                          (27)  

a
2
- X2≤ 0                                                          (28)  

P1 – d ≤ 0                                                         (29)  

c - P1  ≤ 0                                                          (30) 

P2 – e ≤ 0                                                       (31) 

                   f – P2  ≤ 0                                                           (32) 

 

where    g(x) = 25 ( )
2 
 

+ ( )2  – 100 1 2                 (33)  

We have already known that f is an increasing function. Therefore, for the above model, if g(x) is a convex 

function, then this problem will turn to be a convex optimization problem, which is easy to solve.   

 

A. Function g only has two variables. The bus active power P1 and P2 have upper and lower bounds, the 

voltage magnitudes are fixed.   

Write the Hessian matrix of function g.   

H(g(P1, P2)) =              (34)  

It is obvious that H(g(P1, P2)) is positive definite, then g(P1, P2) is a convex function. Therefore, the OPF 

problem is a convex optimization problem for two-bus network, if the voltage magnitudes are fixed, and bus 

active power have upper and lower bounds.  

 

B. Function g has three variables. The bus active power P1 and P2 have upper and lower bounds. One of the 

voltage magnitudes (|V2|) is fixed, another (|V1|) is variable.   

Write the Hessian matrix of function g. Note that Eig means the eigenvalue of a matrix.   

H(g  

                              (35)     

 

Eig [H(g          (36) From (36) we know that H(g(P1, P2, X1)) is 

positive semi-definite, then g(P1, P2, X1) is a convex function. Therefore, the OPF problem is a convex 

optimization problem for two-bus network, if only one of the voltage magnitudes is fixed, and bus active power 

have upper and lower bounds,   
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C. Function g has four variables. The bus active power P1 , P2  and the voltage magnitudes |V1|, |V2| all have 

upper and lower bounds.    

Write the Hessian matrix of function g. 

H(g  

                (37)  

Eig [H(g(P1, P2, X1X2))]   

 
 

From (38) we know that H(g(P1, P2, X1X2)) is indefinite, g(P1, P2, X1X2) is neither a convex function nor a 

concave function. Therefore, the OPF problem is no longer a convex optimization problem for two-bus network, 

if all the voltage magnitudes and bus active power are variable.  

 

VI. Futrue Work  
For future work, we can explore the possibility of using SDP method to solve the OPF problem.   

The general idea of Semidefinite Programming (SDP) method is solving the Lagrangian dual problem 

instead of solving the OPF problem directly [12]- [13]. In [5], a SDP has been proposed, of which the dual is a 

convex relaxation of the OPF problem. Since both the SDP and the rank relaxation are convex, duality holds 

between them, which suggest that the duality gap between OPF and its SDP is zero. Therefore, a global optimal 

solution can be extracted from the optimal solution of its Lagrangian dual. Paper [5] provides a sufficient 

condition under which the existence of no duality gap for the OPF problem is guaranteed. In paper [14], it is 

proved that if the loads are over-satisfied, then the duality gap for OPF over a tree network is always zero, which 

implies the OPF problem can be solved. In paper [10], it is proved that every OPF problem is guaranteed to be 

solvable in polynomial time after two modifications (a. every loop of the network has a line with a phase shifter; 

b. load over-satisfaction is allowed).   

Compared with the study on two-bus network in previous sections, analyzing by SDP method can solve more 

general OPF problem and can reveal more underlying system properties.    

 

VII. Conclusion  
This paper discusses the power system optimization over tree (radial) networks, which is the most 

commonly topology in distribution systems. Since the optimal power flow (OPF) problem is non-convex and 

challenging, the main purpose of this paper is to investigate whether the non-convex region preserves important 

properties of a convex set under variable voltage magnitudes. Simulation has been done in this paper and theory 

analysis shows that in a two-bus network with bus active power constraints, if there is one or more voltage 

magnitudes is fixed, then the OPF problem can be translated to a convex optimization problem, which is easy to 

solve.  In the end of this paper, SDP method has been introduced to solve the OPF problem from another sight.   
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